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A visual tracking algorithm was developed by integrating Haar—like features with adaptive feature extraction. The experiments show that the proposed tracker
solves two knotty problems of visual tracking partially: varying illumination and occlusion.
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* A weak classifier: h(x) = sign(h*x) Erame 21 Frame 169 |

where h is a hyperplane computed using weighted least square regression:
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* A:N x (d+ 1) matrix whose each row is[x;, 1]

* w: N x N diagonal matrix whose diagonal element is w;, weight for each sample

* ¥:N labels, ¥i € {+1, -1} .
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 Whenever a weak classifier is made, weights of samples are updated: W; = fwie(‘ltl t(x:)—yil)

\_ J
[ o ) [ ) r N

- k Mean—shift i N \ Update ) ~ N

* Get a confidence map L

L(r,c) = H(x(r,c)), (r,c) € {target box} U {background box} .
e The location changes of boxes in each iteration * Remain K (< T) weak classifiers * Rotated Haar-like features ‘
to be robust to an occlusion
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/ Conclusion \

€ The combination of Haar—like features and ensemble tracking can improve the performance of a visual tracker in terms of a short occlusion and varying illumination.
€ More works are necessary to succeed in tracking in case of a long occlusion and to add extensions such as initialization of tracking and varying size of target.
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