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1 Introduction 
 After we beat  the baseline Naive Bayes model Quiz score of 1.4171 RMSE, 
and reached the minimum Quiz score threshold of 1.05 RMSE using liblinear library, 
we tried out several different approaches we learned from class: SVM, random 
projection, bigrams, and generative approach with different combinations of 
parameters. Through these different combinations of runs, we have had diverse 
range of RMSE values and accuracies, and we analyzed the behavior of our 
approaches according to these various results. More detailed explanation and 
analysis can be found in the upcoming sections. 

2 Methods 

2.1 SVM  

2.1.1 Approach 

 For this approach, we used the liblinear library on the basic data X composed 
of 62,771 reviews and 89,259 word counts on each review, different solvers and 
used 5-fold Cross-Validation to find the best parameters.  

2.1.2 Analysis 

Type of Solver RMSE from the leadearboard 

L2-regularized L2-loss 
support vector classification (dual) 

1.1147 

L2-regularized L1-loss 
support vector classification (dual) 

1.0231 

multi-class support vector classification 
by Crammer and Singer 

1.2089 

L1-regularized L2-loss  
support vector classification 

1.08 

 
 



 The solver ‘L2-regularized L1-loss’ had better (lower) RMSE compared to that 
of  ‘L2-regularized L2-loss support vector classification (dual)’. We came to this 
conclusion because we tried several different distance measures, and this happened 
to be the best fit for these bag-of-words features that are just the numbers of word 
occurrences. 
 

2.2 PCA using Random Projection 

2.2.1 Approach 

First of all, it should be noted here that if we use PCA method to reduce the 
feature dimension,  the data X, a N-by-M matrix where N is the number of examples 
and M is the number of features, becomes a non-sparse matrix. This is a big 
problem from the point of view of implementation, since we used the property of 
sparsity from the basic bag-of-words features to minimize the usage of memory and 
to speed up using liblinear library instead of libsvm library. For example, a basic X 
for training data using bag-of-words features is  a 62,771x89,259 sparse matrix 
using 64MB. Let’s suppose we reduce the number of features to 9,000 which is 
about the one tenth. Even in this case, we need to store a 62,771x9,000 non-sparse 
matrix that needs 62,771 * 9,000 * 8 bytes = 4.2GB which is too large to deal with it 
on our BIGLAB machine and it also takes too long to learn a model since we can’t 
use liblinear anymore. Thus, we decided to reduce both the number of training 
examples and the number of features. 

To reduce the number of examples, we incorporated the ‘helpful’ data given 
in the training set. Only 26,719 reviews had a ratio of 1,the number of positive votes 
divided by the number of total people who voted. This is fine from the point of view of 
memory usage, but we realized that it takes at least a few days even after extremely 
reducing the feature dimension to 300. Thus, we applied one more heuristic which is 
to sample a half of them based on the same distribution of the ratings of 26,719 
examples. 

Before applying the random projection algorithm directly to the matrix with the 
reduced number of examples, we selected the first 6,900 features that appear at the 
beginning of the list in decreasing order based on the weight values that can be 
achieved by learning a model using SVM on the basic matrix. 

To reduce the feature dimension further, we applied Random Projection 
algorithm to the matrix X achieved after the above two pre-prosessings. A brief 
explanation for the procedures is the following: we compute the production XR, 
13,360x300 matrix, where R is a random 6,900-by-300 matrix by sampling numbers 
randomly from the normal distribution with the mean of 0 and the variance of 1 and 
normalize each column to have unit length.  

2.2.2 Analysis 

 The result of this approach, RMSE=1.2206 from the leaderboard, was worse 
than learning a SVM model on the basic 62,771x89,259 that gives RMSE=0.9422. 
To figure out why this didn’t improve the performance, we inspected the data deeply 
and made some charts to visualize it.  



 
Figure 1 

 
 The Figure 1(a) shows the accuracy from the 5-fold Cross-Validation using 
only a few top features with the largest weights from the model learned by SVM on 
the basic matrix X. As you can see, about 80,000 words after the first 6,900 words 
don’t improve accuracy so much. This is why we discarded the rest of words. The 
Figure 1(b) shows the largest 500 eigen values of 6,900 words from SVD. Similarly, 
300 is enough number of features to capture the principle components. 

'Excellent'    'Great'    'Best'    'stars'    'Good'    'waste'    'Perfect'    'worst'    'Awesome' 
excellent'    'Works'    'Other'    'best'    'Love'    'Poor'    'poor'    'amazing'    'terrible'    'junk'     
LOVE'    'complaint'    'Otherwise'    'Overall'    'love'    'loves'    'Disappointed'    'Horrible'     
'However'    'returned'    'return'    'Not'    'useless'    'awesome'    'Outstanding'    'perfect'     
'Fantastic'    'Amazing'    'fantastic'    'GREAT'    'Wonderful'    'great'    'disappointing'     
'disappointment'    'returning'    'Highly'    'disappointed'    'horrible'    'Thank'    'Easy'    'pleased' 
 
 The above word list shows the top 50 features with the largest weight values 
among those 6,900 features. The words seem to be reasonable to represent the 
good or bad reviews. One thing found from the list is that there are multiple words in 
the list meaning that the basic vocabulary is case-sensitive, so we could merge 
these words into one feature if the more time is given to us. 
 

2.3 Bigrams 

2.3.1 Approach 

 Since we are dealing with reviews, which are basically texts, we thought 
using the information about relationships between adjacent words would be helpful 
when it comes to classifying arbitrary (unseen) reviews.  
 Our first and straightforward approach was to use the liblinear library and 
sparse matrix just like we did before, only by replacing the word_count and word_idx 
with those of bigrams. With this approach we got 38.12% accuracy with 1.06 RMSE. 
This result was somewhat better than what we had expected, but it seemed we can 
improve this with more finer tuning of the data.  



 The next approach we took was to use bigrams information along with 
word_count. The reason we decided to incorporate word_count is to improve the 
RMSE because we already had better RMSE only using the word_count and 
word_idx for the checkpoint. Using this information and combining with bigrams 
information seemed promising because we are using extra information based on the 
already sound approach. The result was quite similar to the approach without using 
the word_count.  
 Based on these, we thought we needed some more information to boost up 
the performance. The next idea we had was to use the title information because title 
can be seen as a summary of the content, and this will certainly be helpful when the 
classifiers are trained. So, by then, we used bigrams, word_count, and title. The 
accuracy turned out to be 38.19%, which is slightly higher (but almost the same) as 
the previous approach and the RMSE turned out to be 0.9916, which was 
significantly better (lower).  

In this approach, we did not normalize each column, and thought 
normalizatoin itself may affect the result. So we came up with a pseudo-
normalization approach, by dividing each value of that column with the largest value 
of that column. The result was a slight improvement of RMSE of 0.9243. 

2.3.2 Analysis 

 The first approach of replacing word information with bigram information was 
the base case for this approach. Unfortunately, the second approach of using 
additional word_count based on the first approach did not boost the performance. 
The accuracy was almost the same, as well as the RMSE. We were expecting the 
results to be better, but then realized there were reasons behind the results. We 
looked into the data and soon realized that most of the occurrence of pair of words 
are usually one. And even the ones that occur more than once had nothing to do 
with the positive/negative words; the most common words were ‘this is’, ‘this product’ 
or category-specific word pairs. We concluded that we over-estimated the impact of 
word pairs. 
 However, we thought having some additional information may boost up the 
performance, either accuracy or RMSE. The next thing we thought to be reasonable 
was using the title as part of the training data, maybe as an extension of the context. 
This is because people tend to summarize their reviews in the title, and the words 
that will play a critical role in classifiers is highly likely to be included. We believed 
that even if we don’t extract useful bigram information from reviews, we may have 
some good/useful words included in the title. This happened to be on the right track 
of improving the performance, and we obtained much better (lower) RMSE. 

2.4 Generative  

2.4.1 Approach 

 Both the data with and without the bigrams were used separately to generate 
predictions for ratings of the reviews.  
 A unique part of this approach was to reconsider the multinomial classification 
into a binary classification. Instead of predicting 1, 2, 4, or 5, we determined if the 



reviews were rated good(4 or 5) or bad(1 or 2). Then we gave good reviews a 
prediction of 4.5 and bad reviews a prediction of 1.5. In this way, if we can perfectly 
determine if a review is good or bad, our RMSE will be 0.5, which is way below the 
RMSE of the leaderboard. 
 However, using bigrams only gave about 85% ~ 90% accuracy on 
determining bad/good side. Since the cost of mistake is high, we tried to reduce the 
error by combining generative approach with the result from SVM. 

Also, to correct where original generative approach made mistakes, we used 
some of the testing data as a training set for better prediction.  

To further reduce the high cost of mistakes made by original approach, we 
used quadgram to determine roughly where our classifier made error with bigram. 
 
2.4.2 Analysis 
 Original generative approach gave RMSE of 1.12. This meant 80 ~ 90% 
accuracy. When SVM replaced some of the results of generative approach, about 
3900 reviews were changed in their sides, and it produced RMSE 0.944. This meant 
that about 2500 reviews were changed correctly, and the remaining 1400 reviews 
were not supposed to be changed. 
 To correct only the reviews that are supposed to be corrected, we tried using 
some of the testing sets as training sets to learn more bigrams along with the 
predictions on those testing sets. This way, we were able to correct about 1000 
reviews that were supposed to be corrected, which was equivalent to about 2% of 
entire errors on the test set because there are about 5000 reviews that we made 
error on. 
 To seek out the remaining errors, we used quadgram. Running quadgram 
was slow so it was best for seeking out little portions of the test sets. We averaged 
the results of the quadgram to that of SVM. Also we just guessed ‘3’ when quadgram 
was really unsure to avoid making high RMSE because we saw that SVM was 
unsure on those reviews, too. The total number of changed ratings was about 4000. 
Some of them included ratings of 3. Few of them were incorrectly changed. 
 We tried using the test set as training set to seek out the remaning errors. 
This effort, however, failed miserably maybe due to the errors in the ‘training set’ 
made from the test set. Almost all the changes made by such approach outside the 
portion of 1000 reviews were incorrect. 
 The final RMSE of the combined methods was 0.9226, which meant that we 
reduced the cost of the mistakes from the original generative approach. The benefits 
of looking at the problem as a binary classification was gaining insights on how much 
we were good at classifying the data into good or bad side, and also being able to 
hypothesize on what RMSE we are going to get just using calculations and without 
any cross-validation. 
 


